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Abstract 

Mechanical ventilation is a common life support system used in the 

intensive care unit (ICU). 48.8% of ICU patients were received 

invasive mechanical ventilation. Weaning is a process that is 

completely independent of mechanical ventilation. Extubation is the 

last step in weaning, and extubation failure is defined as a case in 

which the patient is not completely independent from mechanical 

ventilation. Weaning failure is an important issue in mechanical 

ventilation. Reintubation after extubation due to weaning failure has 

reached 6%-47%, which puts a physical burden on the patient. To 

assess the appropriate extubation timepoint, several clinical 

weaning indices are used, such as RSBI, Pimax, P0.1, and 

P0.1/Pimax. However, no perfect index is available that can be 

used to determine weaning success. This research examines 

various machine learning models and aim to compare a model that 

predicts extubation failure more accurately. 

The Medical Information Mart for Intensive Care (MIMIC-III) 

database was used as the data resource. MIMIC-III is a single-

center database covering 38,597 distinct adult patients admitted to 

the ICU in the Beth Israel Deaconess Medical Center in Boston from 

2001 to 2012. I selected subjects who met eligibility(n=2,094) and 
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extracted data. There were multiple hospitalizations per patient, 

resulting in a total of 3,942 cases collected. All missing values were 

removed, and the data used for analysis were 747cases, which 

were randomly divided into training (80%) and testing (20%) 

datasets. Datasets are fitted in Logistic Regression, KNN, SVM, 

Decision Tree, Random Forest, XGBoost and Light GBM Algorithm. 

Find best hyperparameter using 5-fold Gridsearch cross validation 

on each algorithm. And comparing the model performance results. 

The AUROC for extubation failure was 0.655, 0.900, 0.620, 0.850, 

0.970, 0.966, 0.969. Feature importance of XGBoost and Light 

GBM, which had excellent results, was analyzed. The top 5 of 

features of each model were Ve(minute ventilation), GCS(Glasgow 

coma scale), Height, Vt(tidal volume) and OASIS(Outcome and 

Assessment Information Set) for XGBoost, and Ve, OASIS, 

HR(heart rate), SpO2(Saturation of percutaneous oxygen) and 

MBP(Mean Blood Pressure) for Light GBM. Ve(minute ventilation) 

had the highest impact power in XGBoost and Light GBM models. 

 

Keywords: mechanical ventilation, weaning failure, machine 

learning
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초록 

기계 환기는 중환자실(ICU)에서 사용되는 일반적인 생명 유지 

시스템입니다. ICU 환자의 48.8%가 침습적 기계환기를 받습니다. 

이탈은 기계환기와 완전히 독립하는 과정입니다. 발관은 이탈의 

마지막 단계이며 발관 실패는 환자가 기계적 환기로부터 완전히 

독립되지 않은 경우로 정의합니다. 이탈 실패는 기계환기에서 중요한 

문제입니다. 이탈 실패로 발관 후 재삽관은 6~47%에 이르며 

환자에게 육체적인 부담을 줍니다. 적절한 발관 시점을 평가하기 위해 

RSBI, Pimax, P0.1, P0.1/Pimax 와 같은 여러 임상적 이탈 지표가 

사용됩니다. 그러나 이탈 성공을 결정하는 데 사용할 수 있는 완벽한 

지표는 없습니다. 본 연구는 다양한 머신러닝 모델을 살펴보고 발관 

실패를 보다 정확하게 예측하는 모델을 비교하는 것을 목적으로 

합니다. 

데이터는 MIMIC-III (Medical Information Mart for Intensive Care) 

데이터베이스를 사용하였습니다. MIMIC-III 는 2001 년부터 2012 년 

까지 보스턴에 있는 Beth Israel Deaconess Medical Center 의 

중환자실에 입원한 38,597 명의 개별 성인 환자를 다루는 단일 센터 

데이터베이스 입니다. 적격성을 충족하는 대상자를 선택하고 데이터를 

추출했습니다(n=2,094). 환자 1 인당 여러 번 입원하여 총 3,942 

건의 증례가 수집되었습니다. 모든 결측값을 제거하고 분석에 사용된 

데이터는 747 건으로 훈련 데이터 세트(80%)와 테스트 데이터 



vi 

  

세트(20%) 로 무작위로 분리했습니다. 데이터세트는 Logistic 

Regression, KNN, SVM, Decision Tree, Random Forest, XGBoost, 

Light GBM 알고리즘에 적합 했습니다. 각 알고리즘에 대해 5fold-

Gridsearch 교차 검증을 사용하여 최상의 하이퍼파라미터를 

찾았습니다. 발관 실패에 대한 AUROC는 0.655, 0.900, 0.620, 0.850, 

0.970, 0.966, 0.969 였습니다. 우수한 결과를 보인 XGBoost 및 

Light GBM 모델의 특성 중요도를 분석했습니다. 각 모델의 상위 5 개 

특성은 XGBoost 의 경우 Ve(분당환기량), GCS(글라스고우 혼수 

척도), 신장, Vt(일회호흡량), OASIS(Outcome and Assessment 

Information Set)였으며 Light GBM 에서는 Ve, OASIS, HR(심박수), 

SpO2(산소포화도), MBP(평균동맥압) 이었습니다. Ve는 XG Boost 와 

Light GBM 모델에서 가장 높은 영향력을 보였습니다. 

 

키워드 : 기계 환기, 이탈 실패, 기계 학습 
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 Chapter 1. Introduction 

 1.1 Research Background and Objective 

Mechanical ventilation is a common life support system used in the 

intensive care unit (ICU) and 48.8% of patients admitted to the ICU 

receive invasive mechanical ventilation (Metnitz, Metnitz, Moreno, 

& al., 2009). Mechanical ventilation can provide patients with 

respiratory failure with appropriate oxygenation and ventilation and 

give clinicians more time to treat the underlying disease 

(Wonsch.H., 2013).  Disability of gas exchange due to lung disease, 

decreased consciousness due to cranial nervous system 

abnormalities, decreased function of the respiratory center due to 

cranial nervous system abnormalities, and hemodynamic instability 

due to cardiovascular disease are representative causes of 

mechanical ventilation (M.Tobin. & C.Manthous., 2017).  

Mechanical ventilation hinders normal blood flow circulation due to 

increased thoracic internal pressure, causes airway damage, airway 

pressure-related lung damage, pneumonia, and respiratory muscle 

atrophy, and prolonged mechanical ventilation leads to an extension 

of treatment period, mortality, and morbidity. Weaning is a concept 

that encompasses the entire process in which respiratory failure is 

corrected and the patient is freed from endotracheal tube, 
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mechanical assistance, and all related terminal care. After the acute 

phase has passed and the patient's respiratory status is stabilized, 

the clinician performs the Spontaneous Breathing Test (SBT) and 

finally proceeds to extubation by referring to various indicators. 

The process from SBT to extubation can be viewed as a departure 

from mechanical ventilation (Kyu-Hyouck, 2012). 

Extubation is the last step in weaning, and extubation failure is 

defined as a case in which the patient is not completely independent 

from mechanical ventilation, and weaning failure is an important 

issue in mechanical ventilation. Premature weaning of mechanical 

ventilation can increase the burden on the respiratory and 

cardiovascular systems. Delayed weaning of mechanical ventilation 

may cause diaphragmatic atrophy and weakness (MJ., 2001), 

(Mahmood S, et al., 2014). Therefore, there is a need for a method 

that can reduce the mechanical ventilation period and respiratory 

damage caused by performing weaning of mechanical ventilation at 

an appropriate time.  

 To assess the appropriate extubation timepoint, several clinical 

weaning indices are used, such as the rapid shallow breathing index 

(RSBI), maximal inspiratory pressure(Pimax), airway occlusion 

pressure in the first 100ms(P0.1) and P0.1/Pimax, the most 

commonly used weaning index is the RSBI (S., et al., 2015). 
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However, no perfect index is available that can be used to determine 

weaning success. Reintubation due to extubation failure of 

mechanical ventilation is not uncommon (Mahmood S, et al., 2014). 

Extubation failure is defined as the inability to sustain spontaneous 

breathing after removal of the endotracheal tube and the need for 

re-intubation within 48 hours of extubation. (Kuilkarni AP & 

Agarwal., 2008), (Mahmood S, et al., 2014). In several studies, 

reintubation rate is 6% to 47% (Epstein, Ciubotaru, & Wong, 1997), 

(RL. & RP., 1996), (Esteban, et al., 1995), (Brown CV, et al., 2011). 

The prognosis of patients who have experienced extubation failure 

is poor, and it is known that the in-hospital mortality rate is more 

than 30-40%. (Epstein SK & RL., 1998). Early prediction of 

extubation failure will substantially minimize the need for extended 

ventilators, long stays in the ICU, morbidity, mortality and financial 

burden on the health care system (Epstein SK & RL., 1998), 

(Seymour CW, Martinez A, Christie JD, & BD., 2004).  

Therefore, when deciding on extubation, it is necessary to 

consider various factors along with the process of reducing 

dependence on mechanical ventilation and more accurate indicators 

to improve the current failure rate should be developed. This 

research examines various machine learning models and aims to 

compare a model that predicts extubation failure more accurately. 
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 1.2 Research Design 

This research is retrospective research. I screened the information 

of patients who performed invasive mechanical ventilation which 

was searched from MIMIC-III database with intubation item code 

and extubation item code. After that, I collected the eligible subject 

information according to the selection criteria which were aged 18 

to less than 70 years old adult, the age calculated based on the date 

of hospital admission. According to the above criteria, subjects were 

recruited from the entire MIMIC-III database (n=29,547), and 

among them, those who maintained mechanical ventilation for 24 

hours or more were extracted (n=2,094).  Among the 2,094 

subjects, there was a case where the subject experienced more than 

one invasive mechanical ventilation event due to more than one 

hospitalization. Thus, the number of mechanical ventilation cases of 

the extracted subjects(n=2,094) was 3,942 cases. These cases 

were divided into the extubation failure group and the extubation 

non-failure group. To divide the group, extubation failure was 

defined as reintubation within 48 hours.  

Intubation, Extubation, Reintubation events of the above cases, 

Gender, Age, Height, SAPS-II(Simplified Acute Physiology Score-
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II), OASIS(The Outcome and Assessment Information Set), 

GSC(Glasgow Coma Scale), SpO2(Saturation of percutaneous 

oxygen), FiO2(Fraction of inspired oxygen), MBP(Mean Blood 

Pressure), Vt(Tidal Volume), Ve(Minute Ventilation), HR(Heart 

Rate), RR(Respiratory Rate), Pimax(Maximal Inspiratory 

Pressure), PaCO2(Carbon dioxide pressure in arterial blood) and 

COPD(Chronic obstructive pulmonary disease) were collected. 

Outliers were removed from the collected data, and the removal 

criteria were deleted according to https://github.com/MIT-

LCP/mimic-code. 

Learning was performed with 747 cases data by removing missing 

values. To preserve the meaning of the original data, datasets were 

not imputing the missing data. 

The best model would select by training and validation with Logistic 

Regression, KNN, SVM, Decision Tree, Random Forest, XGBoost 

and Light GBM algorithms. Dataset divided randomly into training 

set (80%) and testing set (20%). The flow chart of the research 

designs is shown in Figure 1. 
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Figure 1 Flowchart of the research design 

 

 Chapter 2. Theoretical Background 

 2.1 Review of Weaning Failure Previous Studies 

When searched PubMed and google scholar for studies published in 
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English from Jan 1, 2010, to Dec 30, 2021, using the search terms 

“mechanical ventilat wean machine leaning”. Chung WC’s 

research was the only article that directly predicts weaning using 

machine learning.  

This research has limitation that only 169 patient ‘s data using for 

learning and Chung suggest only the neural network model which 

trained sex, height, oxygen saturation, Glasgow Coma Scale, Acute 

Physiology and Chronic Health Evaluation II score, pulmonary 

disease history, and respiratory parameters of the first, 30th, 60th, 

and 90th minute. (Chung WC, et al.) Using respiratory parameters 

of various time points could difficult to apply to the real world. 

Because each institution may have different facilities, systems, 

patient treatment protocols, and other resources, a predictive model 

that could be accessed more easily and learned using general 

variables is needed. Also, various machine learning methods, as well 

as neural networks, have the potential to suggest alternatives to 

create an optimal classifier. Chung’s research reported only neural 

networks, there is insufficient evidence to suggest that it is an 

optimal model for predicting extubation failure/success. 

At Zhu’s research, the models were trained by features of the first 

day of admission using KNN, Logistic regression, bagging, decision 

tree, random forest, Extreme Gradient Boosting (XGBoost) and 
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Neural Network (feed-forward network). XGBoost was the best.  

various machine learning models were predicted the mortality of 

subjects who experienced mechanical ventilation, but Zhu's 

research was not studied about success of weaning or weaning 

failure (Zhu Yibing, et al., 2021). 

Therefore, this research designed more subjects were recruited to 

increase power, selected minimized variables to expand 

applicability. The subject’s indications were not disease-specific, 

and to conduct comparative analysis of various machine learning 

methods. Logistic Regression, KNN, SVM, Decision Tree, Random 

Forest, XGboost and Light GBM were selected to compare the best 

classification model. 

 

 2.2 Mechanical ventilation and Weaning 

 2.2.1 Mechanical ventilation 

Mechanical ventilation is a form of life support. A mechanical 

ventilator is a machine that takes over the work of breathing when 

a person is not able to breathe enough on their own. There are many 

reasons why a patient may need a ventilator, but low oxygen levels 

or severe shortness of breath from an infection such as pneumonia 

are the most common reason. Ventilators are used to deliver high 
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concentrations of oxygen into the lungs, to help get rid of carbon 

dioxide, to decrease the amount of energy a patient uses on 

breathing so their body can concentrate on fighting infection or 

recovering, to breathe for a person who is not breathing because of 

injury to the nervous system, like the brain or spinal cord, or who 

has very weak muscles, to breathe for a patient who is unconscious 

because of a severe infection, buildup of toxins, or drug overdose. 

When a person needs to be a ventilator, a healthcare provider will 

insert an endotracheal tube (ET tube) through the patient’s nose 

or mouth and into their windpipe(trachea). This tube is then 

connected to the ventilator. The endotracheal tube and ventilator do 

a variety of jobs. The ventilator pushes a mixture of air and oxygen 

into the patient’s lungs to get oxygen into the body.  

The mechanical ventilation had several risks such as pneumonia, 

pneumothorax and other lung damages. (M.Tobin. & C.Manthous., 

2017) 

 

 2.2.2 Weaning from Mechanical ventilation 

Weaning from mechanical ventilation is an essential and universal 

element in the care of critically ill intubated patients receiving 

mechanical ventilation. Weaning covers the entire process of 

liberating the patient from mechanical support and from the 
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endotracheal tube, including relevant aspects of terminal care. 

There is uncertainty about the best methods for conducting this 

process, which will generally require the cooperation of the patient 

during the phase of recovery from critical illness. This makes 

weaning an important clinical issue for patients and clinicians. 

Weaning is a series of stages in the process of care, from intubation 

and initiation of mechanical ventilation through the initiation of the 

weaning effort to the ultimate liberation from mechanical ventilation 

and successful extubation which has six stages as follows. Stage 1 

was treatment of acute respiratory failure (ARF), stage 2 is 

suspicion that weaning may be possible, stage 3 is assessment of 

readiness to wean, stage 4 is Spontaneous breathing trial (SBT), 

stage 5 is extubation and possibly stage 6 is reintubation.  

There is much evidence that weaning tends to be delayed, exposing 

the patient to unnecessary discomfort and increased risk of 

complications, and increasing the cost of care. Demonstrated that 

mortality increases with increasing duration of mechanical 

ventilation, in part because of complications of prolonged 

mechanical ventilation, especially ventilator-associated pneumonia 

and airway trauma. Moreover, mechanical ventilation costs 

~US$2000 per day Subjects receiving prolonged mechanical 

ventilation account for 6% of all ventilated patients but consume 
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37% of intensive care unit (ICU) resources.  

Increase in the extubation delay between readiness day and 

effective extubation significantly increase mortality. Mortality was 

12% if there was no delay in extubation and 27% when extubation 

was delayed. 

 Thus, criteria for readiness to begin weaning should be 

systematically evaluated each day to allow prompt initiation of 

weaning as soon as the patient is ready this will shorten the weaning 

process and minimize time on mechanical ventilation. This is also an 

independent predictor of successful extubation and survival. 

In most studies, weaning failure is defined as either the failure of 

SBT or the need for reintubation within 48h following extubation. 

Failure of SBT is defined by: one objective indices of failure, such 

as tachypnea, tachycardia, hypertension, hypotension, hypoxemia 

or acidosis, arrhythmia and subjective indices, such as agitation or 

distress, depressed mental status, diaphoresis and evidence of 

increasing effort.  

Failure of extubation is associated with high mortality rate, either 

by selecting for high-risk patients or by inducing deleterious 

effects such as aspiration, atelectasis and pneumonia. Interestingly, 

mortality is not especially increased when failure of extubation is 

related to upper airway obstruction (one out of nine patients, 11%) 
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but is markedly increased in the other case(19 out of 52 patients : 

36%)  (J-M. Boles, 2007). 

 

 2.3 Machine Learning Classifiers 

In this research, I compared and analyzed Logistic Regression, 

KNN, SVM, Decision Tree, Random Forest, XGBoost and Light GBM 

models. The theoretical background of each machine learning model 

are as follows. 

 

 2.2.1 Logistic Regression 

Logistic regression is a classification algorithm used to assign 

observations to a discrete set of classes. There are two types of 

logistic regression, one is binary, the other is multi-linear functions 

fails Class. Classification models that directly specify class labels 

without calculating class conditional probabilities are called 

discriminative models. Logistic regression is a probabilistic 

discriminant model. It directly estimates the odds ratio of the data 

instance x using the attribute values. Logistic regression transforms 

its output using the logistic sigmoid function to return a probability 

value. 

z =  𝑤𝑇𝑥 + 𝑏 
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Since logistic regression analysis has different weights for all 

properties, it is possible to understand the relationship between 

properties and class labels by analyzing the learned logistic 

regression parameters. Also, because logistic regression does not 

include computational density and distance in the attribute space, it 

can work more robustly in higher-dimensional settings than 

distance-based methods such as nearest-neighbor classifiers. 

However, the objective function of logistic regression does not 

include terms related to the complexity of the model. Therefore, 

logistic regression does not provide the same method as support 

vector machines. Nevertheless, variants of logistic regression can 

be easily developed to account for model complexity by including 

appropriate terms in the objective function along with the cross-

entropy function. (Tan, 2019) 

 

 2.2.2 KNN 

K-nearest neighbors (KNN) is a supervised machine learning 

algorithm that can be used to solve both classification and 

regression tasks. K-Nearest Neighbor is one of the simplest 

Machine Learning algorithms based on Supervised Learning 

technique. KNN algorithm assumes the similarity between the new 
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case/data and available cases and puts the new case into the 

category that is most like the available categories. KNN algorithm 

stores all the available data and classifies a new data point based on 

the similarity. This means when new data appears then it can be 

easily classified into a well suite category by using KNN algorithm. 

KNN algorithm can be used for Regression as well as for 

Classification but mostly it is used for the Classification problems. 

KNN is a non-parametric algorithm, which means it does not make 

any assumption on underlying data. 

K-nearest neighbor (KNN) classification, finds a group of k objects 

in the training set that are closest to the test object, and bases the 

assignment of a label on the predominance of a particular class in 

this neighborhood. 

Majority Voting: 𝑦́ =
𝑎𝑟𝑔𝑚𝑎𝑥

𝑣
 ∑ 𝐼(𝑣 = 𝑦𝑖)(𝑥𝑖𝑦𝑖)∈𝐷𝑧

 

There are three key elements of this approach: a set of labeled 

objects such as a set of stored records, a distance or similarity 

metric to compute the distance between objects, and the value of k, 

the number of nearest neighbors. To classify an unlabeled object, 

the distance of this object to the labeled objects is computed, its k-

nearest neighbors are identified, and the class labels of these 

nearest neighbors are then used to determine the class label of the 
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object. 

(Wu, et al., 2008) 

 

Figure 2 k nearest neighbor instance 

 

 2.2.3 SVM 

SVM or Support Vector Machine is a linear model for classification 

and regression problems. It can solve linear and non-linear 

problems. SVM algorithm creates a line or a hyperplane which 

separates the data into classes. At first approximation what SVMs 

do is to find a separating line (or hyperplane) between data of two 

classes. SVM is an algorithm that takes the data as an input and 

outputs a line that separates those classes if possible. 

In a two-class learning task, the aim of SVM is to find the best 

classification function to distinguish between members of the two 

classes in the training data. The metric for the concept of the 
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“best” classification function can be realized geometrically. For a 

linearly separable dataset, a linear classification function 

corresponds to a separating hyperplane 𝑓(𝑥) that passes through 

the middle of the two classes, separating the two. Once this function 

is determined, new data instance 𝑥𝑛 can be classified by simply 

testing the sign of the function 𝑓(𝑥𝑛); 𝑥𝑛  belongs to the positive 

class if 𝑓(𝑥𝑛) >  0. 

Because there are many such linear hyperplanes, what SVM 

additionally guarantee is that the best such function is found by 

maximizing the margin between the two classes. Intuitively, the 

margin is defined as the amount of space, or separation between the 

two classes as defined by the hyperplane. Geometrically, the margin 

corresponds to the shortest distance between the closest data 

points to a point on the hyperplane. Having this geometric definition 

allows us to explore how to maximize the margin, so that even 

though there are an infinite number of hyperplanes, only a few 

qualify as the solution to SVM. 

The reason why SVM insists on finding the maximum margin 

hyperplanes is that it offers the best generalization ability. It allows 

not only the best classification performance (e.g., accuracy) on the 

training data, but also leaves much room for the correct 

classification of the future data. To ensure that the maximum margin 
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hyperplanes are actually found, an SVM classifier attempts to 

maximize the following function with respect to 𝑤⃗⃗  and 𝑏: 

𝐿𝑝 =
1

2
 ||𝑤⃗⃗ || − ∑𝛼𝑖𝑦𝑖(𝑤⃗⃗ ∙ 𝑥 𝑖 + 𝑏) + ∑𝛼𝑖

𝑡

𝑖=1

𝑡

𝑖=1

 

(Wu, et al., 2008). 

 

 2.2.4 Decision Tree 

Decision Tree is one of the predictive modeling algorithm. It uses a 

decision tree to go from observations about an item to conclusions 

about the item’s target value. Tree models where the target 

variable can take a discrete set of values are called classification 

trees, and Decision trees where the target variable can take 

continuous values are called regression trees. (Wu, et al., 2008) 

Decision tree has a hierarchical structure consisting of nodes and 

directed edges. The tree has three types of nodes. A root node that 

has no incoming edges and zero or more outgoing edges. Each of 

internal nodes has exactly one incoming edge and two or more 

outgoing edges. Each leaf or terminal node has exactly one incoming 

edge and no outgoing edges. In a decision tree, each leaf node is 

assigned a class label. The non-terminal nodes include the root and 

other internal nodes. 

Classifying a test record is straightforward once a decision tree has 
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been constructed. Starting from the root node, we apply the test 

condition to the record and follow the appropriate branch based on 

the outcome of the test.  

 

Figure 3 Classifying of decision tree 

Decision tree induction is a nonparametric approach for building 

classification models and provides an expressive representation for 

learning discrete-valued functions. However, they do not 

generalize well to certain types of Boolean problems. Decision tree 

algorithms are quite robust to the presence of noise. Feature 

selection techniques can help to improve the accuracy of decision 

trees by eliminating the irrelevant attributes during preprocessing. 
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(Tan, 2019) 

 

 2.2.5 Random Forest 

Random forest is a Supervised Machine Learning Algorithm that is 

used widely in Classification and Regression problems. It builds 

decision trees on different samples and takes their majority vote for 

classification and average in case of regression. One of the most 

important features of the Random Forest Algorithm is that it can 

handle the data set containing continuous variables as in the case of 

regression and categorical variables as in the case of classification. 

It performs better results for classification problems. 

Random forest is a class of ensemble methods specifically designed 

for decision tree classifiers. It combines the predictions made by 

multiple decision trees, where each tree is generated based on the 

values of an independent set of random vectors, as shown in Figure 

4.  
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Figure 4 Random forests 

 

The random vectors are generated from a fixed probability 

distribution, unlike the adaptive approach used in Ada boost, where 

the probability distribution is varied to focus on examples that are 

hard to classify. Bagging using decision trees is a special case of 

random forests, where randomness is injected into the model-

building process by randomly choosing N samples, with 

replacement, from the original training set. Bagging also uses the 
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same uniform probability distribution to generate its bootstrapped 

samples throughout the entire model-building process. It was 

theoretically proven that the upper bound for generalization error of 

random forests converges to the following expression when the 

number of trees is sufficiently large. 

Random forest improves generalization performance by 

constructing an ensemble of building decision trees. Random forest 

is based on the idea of bagging to use different bootstrap samples 

of training data to learn decision trees. However, the main feature 

of random forests that distinguishes it from bagging is that the best 

splitting criterion is chosen from a small set of randomly selected 

properties at all internal nodes of the tree. In this way, the random 

forest builds an ensemble of decision trees from training instance 

manipulation (using bootstrap samples like bagging) and input 

properties (using a different subset of properties at every internal 

node). 

A bootstrap sample  𝐷𝑖  of the training set is built by randomly 

sampling n instances (randomly replaced) from the dataset. We use  

𝐷𝑖  to train a decision tree 𝑇𝑖 . We randomly sample a set of p 

attributes from all internal nodes of 𝐷𝑖 and select the attribute that 

represents the greatest reduction in impurity measurements for 

isolation from this subset. Repeat this procedure until all leaves are 
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clean. When the ensemble of decision trees is constructed, the 

average prediction (representative vote) for the test instances is 

used as the final prediction of the random forest. The decision tree 

contained in the random forest is an unorganized tree, which can 

grow to the maximum possible size until all the leaves are pure. 

Therefore, the basic classification criterion of the random forest is 

an unstable classifier with low bias but high variance due to its large 

size. Random forests can aggregate predictions for ensembles of 

strongly and unrelated decision trees, reducing the variance of the 

tree without negatively impacting low bias. This makes the random 

forest overfitted (Tan, 2019). 

 

 2.2.6 XGBoost 

XGBoost is a decision-tree-based ensemble Machine Learning 

algorithm that uses a gradient boosting framework. In prediction 

problems involving unstructured data (images, text, etc.) artificial 

neural networks tend to outperform all other algorithms or 

frameworks. However, when it comes to small-to-medium 

structured/tabular data, decision tree-based algorithms are 

considered best-in-class right now.  

XGBoost is a scalable machine learning system for tree boosting. 

The system is available as an open-source package. XGBoost has 
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scalability in all scenarios. The system runs more than ten times 

faster than existing popular solutions on a single machine and scales 

to billions of examples in distributed or memory-limited settings. 

The scalability of XGBoost is due to several important systems and 

algorithmic optimizations. One of those that is a novel tree learning 

algorithm is for handling sparse data and a theoretically justified 

weighted quantile sketch procedure enables handling instance 

weights in approximate tree learning.  

In gradient tree boosting algorithms, the derivation follows from the 

same idea in existing literature in gradient boosting. Specifically, 

the second-order method is originated. We make minor 

improvements in the regularized objective, which were found helpful 

in practice. Regularized Learning Objective For a given data set with 

n examples and m features D = {(𝑥𝑖 , 𝑦𝑖)}(|D| = n, 𝑥𝑖 ∈ 𝑅𝑚 , 𝑦𝑖 ∈ R) , a 

tree ensemble model uses K additive functions to predict the output. 

𝑦𝑖̂ =  ∅(𝑥𝑖) =  ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘

𝐾

𝑘=1

∈ 𝐹, 

Gradient tree boosting 

𝐿(𝑡) = ∑𝑙 (𝑦𝑖 , 𝑦𝑖̂
(𝑡−1)

+ 𝑓𝑡(𝑋𝑖)) +  𝛺(𝑓𝑡)

𝑛

𝑖=1

 

This equation can be used as a scoring function to measure the quality of 

a tree structure q. This score is like the impurity score for evaluating 
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decision trees, except that it is derived for a wider range of objective 

functions 

𝐿̃(𝑡)(𝑞) =  −
1

2
∑

(∑ 𝑔𝑖𝑖∈𝐼𝑗
)
2

∑ ℎ𝑖 +𝑖∈𝐼𝑗 𝜆

𝑇

𝑗=1

+  γT. 

XGBoost proposed a novel sparsity aware algorithm for handling 

sparse data and a theoretically justified weighted quantile sketch for 

approximate learning. XGBoost is able to solve real-world scale 

problems using a minimal amount of resources (Chen & Guestrin, 

2016). 

 

 2.2.7 Light GBM 

Light GBM is a fast, distributed, high-performance gradient 

boosting framework based on decision tree algorithm, used for 

ranking, classification and many other machine learning tasks.  

Since it is based on decision tree algorithms, it splits the tree leaf 

wise with the best fit whereas other boosting algorithms split the 

tree depth wise or level wise rather than leaf-wise. So, when 

growing on the same leaf in Light GBM, the leaf-wise algorithm can 

reduce more loss than the level-wise algorithm and hence results 

in much better accuracy which can rarely be achieved by any of the 

existing boosting algorithms.  

GBDT (Gradient Boosting Decision Tree) is a popular machine 
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learning algorithm and has quite a few effective implementations 

such as XGBoost and pGBRT. However, the efficiency and 

scalability are still unsatisfactory when the feature dimension is 

high and data size is large. A major reason is that for each feature, 

they need to scan all the data instances to estimate the information 

gain of all possible split points, which is very time-consuming. To 

tackle this problem, Light GBM uses two technics. One is GOSS 

(Gradient-based One-side sampling) and the other is 

EFB(Exclusive Feature Bundling) GOSS can obtain quite accurate 

estimation of the information gain with a much smaller data size. 

EFB, which can bundle mutually exclusive features is NP-hard, but 

a greedy algorithm can achieve quite good approximation ratio. 

Therefore, the number of features can be effectively reduced 

without significantly compromising the accuracy of split-point 

determination. New GBDT implementation using GPSS and EFB is 

called Light GBM. 

In Light GBM, GBDT uses decision trees to learn a function from 

the input space 𝑋𝑆 to the gradient space G. Suppose that we have 

a training set with n instances {𝑥1, ⋯ , 𝑥𝑛}, where each 𝑥𝑖 is a vector 

with dimension s in space 𝑋𝑆. In each iteration of gradient boosting, 

the negative gradients of the loss function with respect to the output 

of the model are denoted as {𝑔1, ⋯ , 𝑔𝑛}. The decision tree model 
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splits each node at the most informative feature (with the largest 

information gain). For GBDT, the information gain is usually 

measured by the variance after splitting. When O is training dataset 

on a fixed node of the decision tree. The variance gain of splitting 

feature j at point d for this node is define as 

𝑉𝑗|𝑂(𝑑) = 
1

𝑛𝑂
(
(∑ 𝑔𝑖{𝑥𝑖∈𝑂:𝑥𝑖𝑗≤𝑑} )2

𝑛𝑙|𝑂
𝑗 (𝑑)

+ 
(∑ 𝑔𝑖{𝑥𝑖∈𝑂:𝑥𝑖𝑗>𝑑} )2

𝑛𝑟|𝑂
𝑗 (𝑑)

) 

For feature j, the decision tree algorithm selects 𝑑𝑗
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑑𝑉𝑗(𝑑) 

and calculated the largest gain 𝑉𝑗(𝑑𝑗
∗). (Guolin Ke, 2017) 

 

 Chapter 3. Research Method 

 3.1 Statistical Analysis 

Data Extraction using R (4.1.2) and PostgreSQL (4.6.3). Data 

cleaning and analysis using python (version 3.9). 

 3.1.1 Database 

The Medical Information Mart for Intensive Care (MIMIC-III) 

database was used as the data resource. (Johnson AEW, et al.) 

MIMIC-III is a single-center database covering 38,597 distinct adult 

patients admitted to the ICU in the Beth Israel Deaconess Medical 

Center in Boston from 2001 to 2012. MIMIC-IIII integrates 

comprehensive clinical data and makes them accessible to researchers 
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worldwide under data use agreement. I have obtained permission after 

application and completion of the course and test. I established and 

validated the prediction models using the retrospectively extracted 

data in MIMIC-III 

 

 3.1.2 Data Extraction and Exploratory Data Analysis 

Age was calculated as the age at each admission. Height at the time 

of admission was used, and inches were converted to centimeters. 

COPD was marked as Diagnosed/Non-diagnosed according to the 

hospitalization number match. SAPS II and OASIS were extracted 

according to https://github.com/MIT-LCP/mimic-code and 

matched to hospitalization number. The average values of Vt, Ve, 

HR, MBP, RR, Pimax, and PaCO2 were calculated within 24 hours 

from the time of extubation. GCS, SpO2, and FiO2 were extracted 

as the latest values to collect data just before extubation. 

Before all calculations, outliers were extracted by removing data 

from each variable. Female/male and COPD Diagnosed/Non-

diagnosed were coded as one-hot-encoding. All rows with missing 

values were deleted to preserve the meaning of the original data. 

PaCO2 had the most missing values. 

The P-value between the independent variable and the dependent 
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variable was calculated using statsmodel package of python. 

 

 3.1.3 Characteristic Analysis 

Of the total 16 variables, 2 were categorical and 14 were continuous 

variables. Each variable was analyzed by dividing it into two groups: 

extubation failure and extubation non-failure. The total number of 

cases in the extubation failure group is 215, and the total number of cases 

in the extubation non-failure group is 532. 

Categorical variables of characteristics were expressed as counts. 

Continuous variables of characteristics were expressed as mean 

(SD). The categorical variables are gender (female/male) and COPD 

(diagnosed/non-diagnosed).  

In extubation failure, 84 cases were female, and 131 cases were 

male (female: male ratio was 0.64). In extubation non-failure, 121 

cases were female, and 411 cases were male (female: male ratio 

was 0.29). In the extubation failure group, the female: male ratio 

was higher than that of extubation non-failure, and it was found that 

gender influenced extubation failure. In extubation failure, COPD 

was diagnosed in 27 cases and non-diagnosed in 188 cases 

(diagnosed: non-diagnosed ratio was 0.14). In extubation non-

failure, COPD was diagnosed in 72 cases and non-diagnosed in 460 

cases (diagnosed: non-diagnosed ratio was 0.15). There was no 
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significant difference between the extubation failure group and the 

extubation non-failure group. 

The categorical variables are age, height, GCS (Glasgow coma 

scale), SAPS II (Simplified Acute Physiology Score II), 

OASIS(Outcome and Assessment Information Set), Vt(Tidal 

Volume), Ve(Minute Ventilation), HR(Heart Rate), MBP(Mean 

Blood Pressure), RR(Respiratory Rate), Pimax(Maximal Inspiratory 

Pressure), SpO2(Saturation of percutaneous oxygen), 

FiO2(Fraction of inspired oxygen), PaCO2(Carbon dioxide pressure 

in arterial blood). 

The age average of the extubation failure group was 71.4 years, and 

the average of the extubation non-failure group was 64.8 years. 

Old age could affect extubation failure.  

The height of the average of the extubation failure group was 169, 

and the average of the extubation non-failure group was 173. The 

average height of the non-failure group was greater. 

GCS of the average of the extubation failure group was 2.8, and the 

average of the extubation non-failure group was 3.48. The average 

GCS of the failure group was smaller than non-failure group. 

SAPS II of the average of the extubation failure group was 31.5, and 

the average of the extubation non-failure group was 36.2. OASIS 

of the average of the extubation failure group was 33.1, and the 
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average of the extubation non-failure group was 35.0. These two 

Severity Scores tended to be slightly higher in the extubation non-

failure group. 

In ventilation factors, which include Vt, Ve, HR, MBP, RR, Pimax, 

SpO2, FiO2 and PaCO2. There was no significant difference 

between the two groups and showed a similar trend.  

In the p-value evaluation of all variables, according to Table 1, GCS 

is only variable has p-value less than 0.05. 

 

Table 1 Characteristics between Extubation Failure and Extubation Non-failure 

Variable 

Extubation 

Failure 

n=215 

Extubation 

Non-

failure 

n=532 

p-value 

n = 747 

          

Demographic    

 Age (years), mean(SD) 71.4 (47.3) 64.8 (30.8) 0.078 

 Gender (Females/Male) 84/131 121/411 0.125 

 Height (cm), mean(SD) 169(10.6) 173 (9.72) 0.084 

 GCS(Glasgow coma scale), mean(SD) 2.8 (2.29) 3.48 (2.35) 0.000 

     

Relevant Diagnosis    

 COPD (Diagnosed/Non-diagnosed) 27/188 72/460 0.157 

     

Severity Score    

 SAPS II, mean(SD) 31.5 (14.5) 36.2 (16.1) 0.265 

 OASIS, mean(SD) 33.1 (8.16) 35.0 (16.1) 0.637 

     

Ventilation factors    

 Vt (tidal volume), mean(SD) 501 (79.1) 512 (89.4) 0.705 



31 

 

 Ve (minute ventilation), mean(SD) 9.10 (1.99) 10.0 (2.14) 0.213 

 HR (Heart Rate), mean(SD) 84.3 (12.5) 84.5 (15.2) 0.269 

 
MBP (Mean Blood Pressure), 

mean(SD) 
76.8 (8.67) 77.1 (9.68) 0.022 

 RR (Respiratory Rate), mean(SD) 18.2 (3.69) 19.2 (3.84) 0.110 

 Pimax (cmH2O), mean(SD) 18.7 (4.88) 18.6 (5.10) 0.353 

 SpO2, mean(SD) 97.8 (2.10) 
 97.7 

(2.24) 
0.082 

 FiO2, mean(SD) 47.6  (12.8) 47.0 (12.4) 0.646 

 PaCO2, mean(SD) 9.67 (1.92) 9.65 (1.57) 0.710 

          

 

 3.2 Model Design, fitting, hyperparameter 

Models are developed using Python scikit-learn packages. 

Model fitting is performed using training data which split 0.8 from 

cleansed dataset. Logistic Regression, KNN, SVM, Decision Tree, 

Random Forest, XGBoost and Light GBM models were fitted to train 

data to obtain the best model through GridSearchCV using 5-fold 

validation. The best hyperparameter values of the model used for 

the model fitting process. The hyperparameter values of each best 

model are as follows. Logistic Regression is {'C': 0.1, 'class_weight': 

None, 'penalty': 'l2'}. KNN is {'n_neighbors': 5, 'weights': 

'distance'}. SVM is {‘kernel’:‘linear’, ‘C’=5}. Decision 

Tree is {'max_depth': 7, 'max_features': 0.8}. Random Forest is 

{'max_depth': 8, 'max_features': 0.8, 'n_estimators': 50}. XGBoost 

is {'learning_rate': 0.5, 'max_depth': 5, 'max_features': 0.7, 
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'n_estimators': 200, 'reg_lambda': 0.05}. Light GBM is {'learning 

rate': 0.0001, 'max_depth': 5, 'max_features': 0.8, 'n_estimators': 

200, 'num_leaves': 15}. 

 

 Chapter 4. Results 

 4.1 Model Results 

 4.1.1 Model performance 

The models were evaluated by sensitivity, specificity, accuracy, 

AUROC, and F1 score. 

Precision is the number of correctly classified positive examples 

divided by the number of examples labeled by the system as 

positive. Recall(specificity) is the number of correctly classified 

positive examples divided by the number of positive examples in the 

data. Fscore is a combination of the above.  

 

Table 2 Confusion matrix for binary classification 

Data class Classified as Positive Classified as Negative 

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 

The correctness of a classification can be evaluated by computing 
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the number of correctly recognized class examples (true positives), 

the number of correctly recognized examples that do not belong to 

the class (true negatives), and examples that either were 

incorrectly assigned to the class (false positives) or that were not 

recognized as class examples (false negatives). These four counts 

constitute a confusion matrix for the case of the binary 

classification. 

 

Table 3 Measure for binary classification using the notation of table 2 

Measure Formula Evaluation Focus 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 

Overall effectiveness of a classifier 

Precision 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Class agreement of the data labels 

with the positive labels given by the 

classifier 

Recall 
(Sensitivity) 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Effectiveness of a classifier to identify 

positive labels 

Fscore (𝛽2 + 1)𝑇𝑃

(𝛽2 + 1)𝑇𝑃 + 𝛽2𝐹𝑁 + 𝐹𝑃
 

Relations between data’s positive 

labels and those given by a classifier 

Specificity 𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

How effectively a classifier identifies 

negative labels 

AUC 1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+ 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

Classifier’s ability to avoid false 

classification 

 

table 3 presents the most often used measures for binary 

classification based on the values of the confusion matrix. AUC 

(Area Under the Curve), 3 captures a single point on the Reception 

Operating Characteristic curve. However, we present Fscore’s 
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properties because of its extensive use in text classification.  

(Marina Sokolova, 2009) 

A binary classification problem is common in the medical field, often 

using sensitivity, specificity, accuracy, negative and positive 

predictive values as measures of performance of the binary 

predictor. In computer science, a classifier is usually evaluated with 

precision (positive predictive value) and recall(sensitivity). As a 

single summary measure of a classifier’s performance, F1 score, 

defined as the harmonic mean of precision and recall, is widely used 

in the context of information retrieval and information extraction 

evaluation since it possesses favorable characteristics, especially 

when the prevalence is low. (Takahashi, 2021) 

The best models were trained through hyperparameters of each 

method were evaluated as test data. The accuracy, sensitivity, 

specificity, F1 score, and AUROC of each model were shown in 

Table 4. 

 

Table 4 Accuracy, Sensitivity, specificity, F1 score and AUROC for predict 

extubation failure 

 
Logistic 

Regression 
KNN SVM 

Decision 

Tree 

Random 

Forest 
XGBoost 

Light 

GBM 

Accuracy 0.687 0.893 0.733 0.873 0.893 0.900 0.907 

Sensitivity 0.184 0.796 0.347 0.694 0.755 0.837 0.816 

Specificity 0.931 0.941 0.921 0.960 0.960 0.931 0.950 
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F1 Score 0.277 0.830 0.459 0.782 0.822 0.845 0.851 

AUROC 0.655 0.900 0.620 0.850 0.965 0.966 0.966 

 

The accuracy of each model evaluated using the test set was as 

follows. Logistic Regression was 0.687, KNN was 0.893, SVM was 

0.733, Decision Tree was 0.873, Random Forest is 0.893, XGBoost 

is 0.900 and Light GBM was 0.907. XGBoost and Light GBM show 

outstanding accuracy which exceeded 0.9. random forest and KNN 

also show high accuracy comparable to that. The sensitivity of 

XGBoost was 0.837 and Light GBM was 0.816. Specificity of All 

models were over 0.9. The specificity of XGBoost was 0.931 and 

Light GBM was 0.950. F1 Score of XGBoost is 0.845 and Light GBM 

is 0.851. XGBoost and Light GBM showed similar values where it 

was difficult to distinguish the difference between the two models. 

Figure 5 is a visual representation of the ROC curve. AUROC of 

KNN was 0.9, Random Forest was 0.965, Light GBM was 0.966 and 

XGBoost was 0.966. 
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Logistic Regression 

 

KNN 

 

SVM 

 

Decision Tree 

 

Random Forest 

 

XGBoost 
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Light GBM 

 

Figure 5 Receiver operating characteristic (ROC) curves of the seven models 

 

 4.1.2 Calibration plot 

The best possible method of measuring the performance of a 

classifier's probability prediction on a dataset is using the calibration 

curve which is also referred to as a standardized curve. The 

calibration curve is created as Figure 6. (B. C. Wallace and I. J. 

Dahabreh, 2012). 
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Logistic Regression 

 

KNN 

 

SVM 

 

Decision Tree 
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Random Forest 

 

XGBoost 

 

Light GBM 

 

Figure 6 Calibration Plots of the seven models 

 

The dotted line (standardized curve) shows the perfect calibrated 

curve. This research tested the various classifier models such as 

Logistic Regression, KNN, SVM, Decision Tree, Random Forest, 

XGBoost and Light GBM. 
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The graph illustrates the deviation of seven different classifier 

models from the non-calibrated curve and calibrated curve. KNN, 

Decision tree, XGBoost, Light GBM showed better non-calibrated 

curve than the calibrated curve.  Logistic regression, SVM was 

slightly improved in the calibrated model, but this model had low 

predict-probability. Random forest was almost similar between the 

non-calibrated curve and calibrated curve. XGBoost and Light GBM 

is good to predict probability in the non-calibrated curve. 

 

 4.1.3 Best Model Selection 

XGBoost and Light GBM models were showed outstanding 

performance and better predict probability than other models. but 

the purpose of the classification model is to distinguish between true 

positive rate (Sensitivity) and true negative rate (Specificity). Also 

in the medical field, it can be important to ensure a high degree of 

specificity in diagnosis. Considering the purpose of a test in certain 

populations requires careful consideration of both sensitivity and 

specificity. This helps both healthcare providers and patients to 

make the best decisions about testing and treatment. The higher 

model’s specificity, the less often it will incorrectly find a result it 

is not supposed to. 

Among models with similar accuracy and AUROC, the model that 
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classifies sensitivity and specificity in a balanced way could be 

better than the highest sensitivity model. Therefore, in this 

research, XGBoost can be interpreted as the best classification 

model. 

 

 4.2 Feature Importance 

In this research, data included in previous studies and variables 

traditionally considered to be related to extubation failure were 

included. And, in order to be easily applied in external validation or 

other institutions in the future, I tried to exclude as much as possible 

the variables that can be Institution-specific, and I tried to develop 

a model that can achieve the best performance with simple features. 

The models showing the best performance were XGBoost and Light 

GBM. It was difficult to distinguish between superiority and 

inferiority, and the variables that affected each model were ranked 

by the model using SHAP, and the learning variables were compared 

and analyzed. And selected the top 5 variables.  

Comparing the importance of variables used in model training can 

distinguish the influence of variables that are strongly influenced 

and those that do not, among variables expected to be actually 

related. Therefore, through this analysis, we can confirm how much 
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the variables that were thought to be statistically or related in past 

studies helped predictive learning.  

XGBoost was selected as the best model in this research. According 

to Figure7, Ve, GCS, Height, Vt, OASIS, and Age were the top 5 

variables in the XGBoost model. The most impact variable was Ve.  

In XGBoost, the variables considered significant in previous 

research such as Pimax, COPD, and SpO2, had little effect on model 

output. 

 

Figure 7 SHAP value of XGBoost 
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In SHAP of Light GBM(Figure 8), The top 5 variables were Ve, 

OASIS, HR, SpO2, and MBP. Ve was the most impact variable in 

Light GBM, like XGBoost. OASIS was considered an important 

variable in these two models. SpO2 was the low importance in 

XGBoost model, but in Light GBM, it was an important variable. 

COPD was the lowest level important variable on both models. 

 

 

Figure 8 SHAP value of Light GBM 
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 Chapter 5. Conclusion 

 5.1 Summary and Implications 

Weaning failure is an important issue in mechanical ventilation. To 

assess the optimal timing of weaning and extubation, various 

weaning indices were used such as the rapid shallow breathing 

index (RSBI), maximal inspiratory pressure (Pimax), airway 

occlusion pressure in the first 100 ms (P0.1), and P0.1/Pimax. 

However, the reintubation rate after extubation failure is 6% to 

47%. Therefore, when deciding on extubation, it is necessary to 

consider various factors along with the process of reducing 

dependence on mechanical ventilation, and more accurate indicators 

to improve the current failure rate should be developed. 

In this research, extubation cases of adult patients who performed 

mechanical ventilation in the MIMIC-III database were classified 

into extubation failure and extubation non-failure groups, and 

Logistic regression, KNN, SVM, Decision Tree, Random Forest, 

XGBoost and Light GBM were trained and tested. Then, select the 

best model that more accurately predicts extubation failure by 

comparing and analyzing various classification models. 

As a result of this research, the accuracy of KNN, Decision Tree, 



45 

 

XGBoost, and Light GBM were 0.893, 0.893, 0.900, and 0.907. 

Sensitivity, Specificity, F1 Score, AUROC, and Calibration Plot were 

compared to select the Best Model among XGBoost and Light GBM. 

XGBoost was selected as the best model because Sensitivity and 

Specificity were balanced at 0.837 and 0.931. 

 In addition, the feature importance of XGBoost and Light GBM and 

Top 5 variables were compared. Ve and Oasis were observed in 

both models, and the top 5 variables of XGBoost were Ve, GCS, 

Height, Vt, and OASIS. COPD onset and gender, which were 

traditionally considered significant, did not have a significant effect 

on the learning of the model. 

This research was the only paper that compares and analyzes 

extubation failure with various machine learning classifiers. This 

research designed more subjects were recruited to increase power, 

selected minimized variables to expand applicability. Subject’s 

indications which used for model training were not disease-

specific, and to conduct comparative analysis of various machine 

learning methods. Logistic Regression, KNN, SVM, Decision Tree, 

Random Forest, XGBoost and Light GBM selected to find best 

classification model.  

This research showed high model performance, and the Accuracy, 

Sensitivity, Specificity, F1 score and AUROC of the best model 
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which trained XGBoost algorithm selected in this research were 

0.900, 0.837, 0.931, 0.845, 0.966. It had shown outstanding results 

in medical classification models. This model could be used widely 

for improving extubation failure. 

Model using the time series data might be difficult to apply to the 

real world depending on institutions. In addition, too many variables 

could increase the complexity of the model and increase the amount 

of computation cost which could become a hurdle that is difficult to 

use in the real world. In this research, to overcome such limitations, 

this research was trained and evaluated using only 13 variables and 

data within 24 hours to determine the patient's extubation. 

Nevertheless, the result of AUC was higher than that of Chung's 

research using time series data as neural network.  

Therefore, this research has good scalability and can be used in 

practice to relatively accurately classify whether or not extubation 

fails or not, using patient data within 24 hours before the medical 

staff decides on extubation of the patient. This model allows the 

medical staff to determine the timing of extubation and it could help 

medical decisions. 
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 5.2 Research Limitation and Future Plans 

There had limitations in this research. First, models were 

retrospectively studied based on a single-center database. Thus, 

further prospective or multicenter research is needed to evaluate 

the generalization of models and predictors. Second, there were 

missing data in this research. Due to missing data, it was difficult to 

predict the exact subject's condition at a specific time point, and 

variables with many missing data among potential variables could 

not be included in the model design. In this research, to preserve 

the meaning of variables, missing data were eliminated without 

imputation or scaling. However, if using imputation of missing values 

in future research, more data could be utilized, and different insights 

from this research could be obtained. Third, external validation has 

not been employed in this research. In future research, If model 

shows good performance in external validation, the variables and 

models used in this research could get scalability. Forth, Despite 

the high model performance, uniform results were not obtained in 

the calibration plot. Rather, most of the models showed more stable 

predict probability in the non-calibrated plot. There is a need to 

build datasets from various perspectives and test them in future 

studies.  
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